A Novel Catalyst for CO₂ Reforming of CH₄

Chuan Jing HUANG^{1,2}, Xiao Ming ZHENG¹*, Liu Ye MO¹, Jin Hua FEI¹

¹Institute of Catalysis, Xixi campus, Zhejiang University, Hangzhou 310028 ²Department of Chemistry, Huaibei Coal Teachers College, Huaibei 235000

Abstract: A novel Ni-Co/SiO₂ catalyst which exhibits high activity and excellent anti-carbon deposition property for CO_2 reforming of CH_4 to synthesis gas is developed.

Keywords: CO₂ reforming of CH₄, synthesis gas, Ni-Co/SiO₂ catalyst.

The reforming of CH₄ with CO₂ into syngas is a very attractive route for the production of energy and chemicals. One of the major problems encountered in the application of this process is catalyst deactivation mainly by carbon deposition *via* the Boudouard reaction and/or CH₄ cracking, which are favorable under reaction conditions¹⁻³. During the past dacades, the process has received attention and nickel and noble metal catalysts have been extensively studied, but few studies were made on cobalt catalysts. Especially, no any studies were made on Ni-Co bimetal catalysts for this reaction. In our earlier studies⁴, Co/SiO₂ catalyst prepared from cobalt acetate showed optimal catalytic performance for CO₂ reforming of CH₄. The catalyst, however, had to be reduced at quite high temperature (973K) prior to the reaction. Here, we reports results obtained over Ni-Co/SiO₂ catalyst which exhibits high activity and excellent anti-carbon deposition property even with no pre-reduction.

 Co/SiO_2 , Ni/SiO_2 and Ni-Co/SiO_2 catalysts were prepared by impregnation and coimpregnation method, respectively. Cobalt or nickel acetate was used as starting salt. After being dried overnight at 393K, the catalyst was then calcined at 873K in air for 5h. Ni or Co loading was 4wt%.

Catalysts were tested in a fixed bed flow reactor without any pre-reduction. All of the tests were conducted under atmospheric pressure in a stream of $CH_4/CO_2=1.07$ and $GHSV = 4000 \text{ cm}^3/\text{g/h}$. The effluents were analyzed in a gas chromatograph equipped with a TDX-01 column. The amount of carbon deposited on catalyst was measured by temperature programmed oxidation (TPO)⁵.

TPR experiments were conducted using 5%H₂ in N₂ (30ml/min) with 20K/min ramp rate in the temperature range between 353 and 1173K. At 1173K, the sample was kept for 13 min. CO₂-TPD was performed at a rate of 20K/min in flowing He. The evolved gases were monitored by on-line mass spectrometry. Before the experiment, the catalyst was reduced in H₂ at 973K for 1h, then flushed with He for 10min and cooled in flowing He to 303K. The catalytic results are compared in **Table 1**. Without pre-reduction, the catalytic activity decreased in the order: Ni-Co/SiO₂ > Ni/SiO₂ >> Co/SiO₂. Co/SiO₂ catalyst had no activity, while Ni-Co/SiO₂ was the most active of the three catalysts and much less sensitive to coking than Ni/SiO₂ Catalyst.

Catalyst	Reaction	Products/%			CO/H ₂	Carbon
	Temp./K	CH_4	CO_2	CO+H ₂		Amounts/%
Co/SiO ₂	973	51.5	47.8	Trace	_	—
Ni/SiO ₂	873	26.5	21.1	48.5	1.11	8.37
	973	6.37	7.74	85.9	1.07	6.18
Ni-Co/SiO ₂	873	21.9	18.3	59.7	1.04	0.64
	973	6.95	3.95	89.1	0.99	0.39

Table 1 The results of CO_2 reforming of CH_4 obtained over
various catalysts after 2h of reaction

The alteration of CH_4 conversion over Ni/SiO₂ and Ni-Co/SiO₂ catalysts with reaction time at 873K is shown in **Figure 1**. The CH_4 conversion over Ni-Co/SiO₂ catalyst increased with time on stream during the initial 1h of reaction, and then remained invariable with time on stream during 10h of reaction. In contrast, in the case of Ni/SiO₂ catalyst it was found that CH_4 conversion decreased continuously with reaction time and the reaction had to be stopped because of the reactor becoming completely plugged by carbon deposits after 6 h. The activity of Ni/SiO₂ deactivated was renewed by exposure of the catalyst to O₂ at 973K to remove the carbon deposits. This implied that carbon deposition was a main cause for deactivation of the catalyst.

Figure 1 Stability of Ni/SiO₂ (2) and Ni-Co/SiO₂ (1) catalysts (T = 873K)

In **Figure 2** the H₂ TPR data are presented. It is clear that Ni/SiO₂ catalyst was more reducible than Co/SiO₂ catalyst. On the former catalyst two peaks appeared at 681 and 713K, probably due to the reduction of NiO with smaller and larger particle size, respectively⁶. On the latter catalyst, however, only one high-temperature peak (1123K) was measured. The peak, which was characteristic of surface cobalt silicate species⁷, diminished and shifted to lower temperature (1028K) in the case of Ni-Co/SiO₂ catalyst. The diminishing of the peak implied that a part of cobalt species was reduced at still lower temperature. Furthermore, differing from Ni/SiO₂ and Co/SiO₂ catalysts further a

A Novel Catalyst for CO₂ Reforming of CH₄

peak was also observed for the Ni-Co/SiO₂ catalyst. The peak might be ascribed to the reduction of well-dispersed NiO. These results clearly showed improved reducibility for both NiO and cobalt species in Ni-Co/SiO₂. It is inferred that NiO could be reduced under working reaction conditions and the reduction of cobalt species could be promoted by spillover hydrogen activated on the nickel metal. This can account for higher activity of the catalyst than Ni/SiO₂ and Co/SiO₂ catalysts.

Figure 2 TPR spectra of different catalysts

(a) Pure NiO; (b) Co/SiO₂; (c) Ni/SiO₂; (d) Ni-Co/SiO₂

From TPO spectra in **Figure 3**, three type of carbonaceous species are found to exist on Ni/SiO₂ catalyst, designated as C_{α} at 653K, C_{β} at 835K and C_{γ} at 923K. The addition of Co to the catalyst resulted in a disappearance of C_{β} , a dramatic decrease in C_{γ} and a shift of the peak of C_{α} to lower temperature (597K). This implied that Co was responsible for the suppression of less reactive carbon species on Ni-Co/SiO₂ catalyst.

Figure 3 TPO profiles of carbon deposition over (a) Ni/SiO₂ and (b) Ni-Co/SiO₂ catalysts on stream at 973K for 2h

CO₂-TPD profiles are shown in Figure 4. On Co/SiO₂ catalyst three peaks,

Chuan Jing HUANG et al.

denoted as α , β and γ , appeared at 393, 453 and 513K. They were related to weak, moderate and strong base centers, respectively. The peaks of Ni-Co/SiO₂ catalyst were similar to that of Co/SiO₂ except for peak γ . However, for Ni/SiO₂ catalyst only peak α was observed. From the results, it can be seen that the ability of CO₂ absorption decreased in the order: Co/SiO₂ > Ni-Co/SiO₂ > Ni/SiO₂. In the CH₄/CO₂ reforming reaction, carbon deposits can be eliminated by the gasification reaction, *i.e.*, CO₂ + C \rightarrow 2CO. The ability of CO₂ to eliminate carbon will be improved duo to its absorption ability⁸. So it is deduced that the ability of resistance to carbon deposition of the Ni-Co/SiO₂ catalyst might be related to its property of CO₂ absorption.

Figure 5 CO₂-TPD spectra for (a) Co/SiO₂, (b) Co-Ni/SiO₂ and (c) Ni/SiO₂

Acknowledgments

The project was supported by the Zhejiang Provincial Science Foundation of China and by the Education Commission of Zhejiang Province.

References

- 1. J. T. Richardson, J. A. Paripatyadar, Appl. Catal. 1990, 61, 293.
- 2. A. T. Ashcroft, A. K. Cheetman, M. C. H. Green, P. D. F. Vernon, Nature, 1991, 352, 225.
- 3. T. Sodesawa, A. Dobashi, F. Nozaki, React. Kinet. Catal. Lett., 1979, 12, 107.
- 4. C. J. Hang, J. H. Fei, D. J. Wang, X. M. Zheng, Chinese Chemical Letters, 2000, 11 (2), 181
- 5. L. Y. Fu, W. G. Xie, S. J. Lu, F. L. Qiu, *Science in China (Zhong Guo Ke Xue, in Chinese)*, **2000**, *30* (1), 84.
- 6. E. E. Vnmuth, L. H. Schwartz, J. B. Butt, J. Catal., 1980, 61, 39.
- 7. E. Van Steen, G. S. Seweel, R. A. Makhothe, C. Micklethwaite, J. Catal., 1996, 162, 220.
- 8. G. L. Xu, K. Y. Shi, Y. Gao, H. Y. Xu, Y. D. Wei, J. Mol. Catal., 1999, 147, 47.

Received 23 August, 2000